On the integrability of a class of Monge-Ampere equations


Creative Commons License

BRUNELLI J. C., GÜRSES M., ZHELTUKHIN K.

REVIEWS IN MATHEMATICAL PHYSICS, cilt.13, sa.4, ss.529-543, 2001 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Derleme
  • Cilt numarası: 13 Sayı: 4
  • Basım Tarihi: 2001
  • Doi Numarası: 10.1142/s0129055x01000764
  • Dergi Adı: REVIEWS IN MATHEMATICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.529-543
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

We give the Lax representations for the elliptic, hyperbolic and homogeneous second order Monge-Ampere equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampere equations. Local as well nonlocal conserved densities are obtained.