Abstract or Full-text in Topic Modeling? Konu Modellemede Özet mi Tam Metin mi?


Tekin Y., Cosar A.

30th Signal Processing and Communications Applications Conference, SIU 2022, Safranbolu, Türkiye, 15 - 18 Mayıs 2022 identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/siu55565.2022.9864707
  • Basıldığı Şehir: Safranbolu
  • Basıldığı Ülke: Türkiye
  • Anahtar Kelimeler: abstract, full-text, LDA, parameter optimization, topic modeling
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

© 2022 IEEE.Topic modeling is a text mining technique used for automatic extraction of topics addressed in document collections. Although there are different topic models proposed by researchers, the most preferred one is Latent Dirichlet Allocation (LDA). Despite such widespread use, uncertainties about LDA have not been fully resolved yet. In this study, the effect of using abstracts or full-text articles on LDA model parameters is investigated. For this purpose, LDA parameters are optimized on abstracts and full-texts of articles published in two different scientific journals and the results obtained are compared with each other.