IMMOBILIZATION OF GLUCOSE-OXIDASE - A COMPARISON OF ENTRAPMENT AND COVALENT BONDING


ARICA M., HASIRCI V.

JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, cilt.58, sa.3, ss.287-292, 1993 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 58 Sayı: 3
  • Basım Tarihi: 1993
  • Doi Numarası: 10.1002/jctb.280580313
  • Dergi Adı: JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, EMBASE, Food Science & Technology Abstracts, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.287-292
  • Anahtar Kelimeler: ENTRAPMENT, COVALENT BONDING, PHEMA, GLUCOSE OXIDASE, PROTEASE IMMOBILIZATION, OPERATIONAL STABILITY, CATALASE, REACTOR, BEADS, ACID
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Glucose oxidase was immobilized onto poly(2-hydroxyethyl methacrylate) (pHEMA) membranes by two methods: by covalent bonding through epichlorohydrin and by entrapment between pHEMA membranes. The highest immobilization efficiency was found to be 17.4% and 93.7% for the covalent bonding and entrapment, respectively. The K(m) values were 5.9 mmol dm-3, 8.8 mmol dm-3 and 12.4 mmol dm-3 for free, bound and entrapped enzyme, respectively. The V(max) values were 0.071 mmol dm-3 min-1, 0.067 mmol dm-3 min-1 and 0.056 mmol dm-3 min-1 for free, bound and entrapped enzyme. When the medium was saturated with oxygen, K(m) was not significantly altered but V(max) was. The optimum pH values for the free, covalently-bound and entrapped enzyme were determined to be 5, 6, and 7, respectively. The optimum temperature was 30-degrees-C for free or covalently-bound enzyme but 35-degrees-C for entrapped enzyme. The deactivation constant for bound enzyme was determined as 1.7 x 10(-4) min-1 and 6.9 x 10(-4) min-1 for the entrapped enzyme.