Tameness in Frechet spaces of analytic functions


Creative Commons License

Aytuna A.

STUDIA MATHEMATICA, vol.232, no.3, pp.243-266, 2016 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 232 Issue: 3
  • Publication Date: 2016
  • Doi Number: 10.4064/sm8423-3-2016
  • Journal Name: STUDIA MATHEMATICA
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.243-266
  • Keywords: tameness of Frechet spaces, analytic function spaces, linear topological invariants, POWER-SERIES SPACES, SUBSPACES, MANIFOLDS, PAIRS

Abstract

A Frechet space chi with a sequence {parallel to.parallel to k}(k=1)(infinity) of generating seminorms is called tame if there exists an increasing function sigma : N -> Nsuch that for every continuous linear operator T from chi into itself, there exist N-0 and C > 0 such that