Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes


GÜNER S., DERİCİOĞLU A. F.

BIOINSPIRATION & BIOMIMETICS, cilt.12, sa.1, 2017 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 1
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1088/1748-3190/12/1/016002
  • Dergi Adı: BIOINSPIRATION & BIOMIMETICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and manpower effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.