Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy


Arikan A., Kaynak C., Tincer T.

POLYMER COMPOSITES, cilt.23, sa.5, ss.790-805, 2002 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 23 Sayı: 5
  • Basım Tarihi: 2002
  • Doi Numarası: 10.1002/pc.10477
  • Dergi Adı: POLYMER COMPOSITES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.790-805
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and also HTPB modification of epoxy mixture. In the ruber modified specimens, hardener and HTPB were premixed and left at room temperature for 1 hr before epoxy addition. In order to observe the effects of short glass fiber reinforcement of epoxy matrix, silane treatment of fiber surfaces, and also rubber modification of epoxy on the mechanical behavior of specimens, tension and impact tests were performed. The fracture surfaces and thermal behavior of all specimens were examined by scanning electron microscope (SEM), and dynamic mechanical analysis (DMA), respectively. It can be concluded that increasing the short GF content increased the tensile and impact strengths of the specimens. Moreover, the surface treatment of GFs with SCA and HTPB modification of epoxy improved the mechanical properties because of the strong interaction between fibers, epoxy, and rubber. SEM studies showed that use of SCA improved interfacial bonding between the glass fibers and the epoxy matrix. Moreover, it was found that HTPB domains having relatively round shapes formed in the matrix. These rubber domains led to improved strength and toughness, due mainly to the "rubber toughening" effect in the brittle epoxy matrix.