Sectoral Drought Vulnerability and Drought Period Forecasts in Van Lake Basin, Turkey Until 2100

Creative Commons License

Fırat E., Yılmaz K. K., Aydın H.

European Geosciences Union General Assembly, Vienna, Austria, 7 - 12 April 2019, vol.21, pp.1602

  • Publication Type: Conference Paper / Summary Text
  • Volume: 21
  • City: Vienna
  • Country: Austria
  • Page Numbers: pp.1602
  • Middle East Technical University Affiliated: Yes


Van Lake Basin consists of critical regions in regards to drought events. Specifically, the droughts have an impacton the socio-economic level, which is considered to be the most extreme phase of the drought in that area. Besides,it began to trigger the migration from the basin due to the intense drought event. Therefore, drought conditionsthat may occur during the future periods on this basin have been determined by drought indices. In addition to this,vulnerability analysis were conducted for 5 different sectors (drinking-use, agriculture-livestock, tourism, industryand ecosystem) in the basin. Drought calculations were made for different indices (SPI, scPDSI, scPHDI, SRI andNDVI) by using in situ measurements: precipitation, temperature, evaporation, flow values, and satellite imagesto determine the drought intensity and period of the basin. The indices were computed in different time periods(1, 3, 6, 9, 12...48 months) and the indices types and periods that could represent the basin for different droughtconditions (meteorological, agricultural and hydrological) were determined. Additionally, hydrological model ofthe basin was conducted for the actual situation by MIKE-NAM model. The annual changes of the hydrologicalcomponents which are the overland flow, interflow and baseflow were examined and compared with the resultsdeduced from indices calculations. Over and above, the hydrological model of the basin has been re-run over theyears (2017-2100) by using the climate projections including precipitation, temperature and evaporation. Thus, theflow values of the basin were obtained during the projection period. The hydrological model enables flow forecastsand using SRI for the hydrological drought prediction throughout the climate projection period. After that, theindices were recalculated to cover the projection years and compared with each other again. The findings obtainedfrom the first and the last indices comparisons indicate that the same indices types and periods give the bestresult for the basin. Furthermore, the hydrological components of the basin can also be analyzed annually duringprojection periods. The results of drought analysis were then combined with the water susceptibility, economicvalue and the adaptability of each sector in the basin against drought on the basis of sub-basins. The sectoralvulnerability analysis of the basin were examined in four main classes (slight, moderate, severe and extreme) until2100. The inferences play a crucial role in determining the precautions for the government decision-makers whoare responsible for the drought mitigations