Journal of Mathematical Chemistry, cilt.60, sa.6, ss.1107-1129, 2022 (SCI-Expanded)
© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.A Rayleigh–Ritz Method is suggested for solving linear Fredholm integral equations of the second kind numerically in a desired accuracy. To test the performance of the present approach, the classical one-dimensional Schrödinger equation -y″(x)+v(x)y(x)=λy(x),x∈(-∞,∞) has been converted into an integral equation. For a regular problem, the unbounded interval is truncated to x∈ [ - ℓ, ℓ] , where ℓ is regarded as a boundary parameter. Then, the resulting integral equation has been solved and the results are compared with the very well known eigenvalues of the Schrödinger equation with several types of potential functions v(x). It is shown that the eigenvalues recorded to about 15 significant figures are in excellent agreement with the results that exist in the literature.