ADAPTIVE SYMMETRIC INTERIOR PENALTY GALERKIN METHOD FOR BOUNDARY CONTROL PROBLEMS


Creative Commons License

BENNER P., Yuecel H.

SIAM JOURNAL ON NUMERICAL ANALYSIS, cilt.55, sa.2, ss.1101-1133, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 2
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1137/15m1034507
  • Dergi Adı: SIAM JOURNAL ON NUMERICAL ANALYSIS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1101-1133
  • Anahtar Kelimeler: a posteriori error analysis, optimal boundary control problems, control constraints, adaptive finite element methods, discontinuous Galerkin methods, CONSTRAINED OPTIMAL-CONTROL, POSTERIORI ERROR ANALYSIS, CONVECTION-DIFFUSION EQUATIONS, PARTIAL-DIFFERENTIAL-EQUATIONS, FINITE-ELEMENT APPROXIMATION, 2ND-ORDER ELLIPTIC PROBLEMS, VARIATIONAL DISCRETIZATION, CONVERGENCE, STRATEGY
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

We investigate an a posteriori error analysis of adaptive finite element approximations of linear-quadratic boundary optimal control problems under bilateral box constraints, which act on a Neumann boundary control. We use a symmetric interior Galerkin method as discretization technique. An efficient and reliable residual-type error estimator is introduced by invoking data oscillations. We then derive local upper and lower a posteriori error estimates for the boundary control problem. Adaptive mesh refinement indicated by a posteriori error estimates is applied. Numerical results are presented to illustrate the performance of the adaptive finite element approximation.