A note on the products ((m+1)(2)+1)((m+2)(2)+1) ... (n(2)+1) and ((m+1)(3)+1)((m+2)(3)+1) ... (n(3)+1)


Gurel E.

MATHEMATICAL COMMUNICATIONS, vol.21, no.1, pp.109-114, 2016 (Peer-Reviewed Journal) identifier

  • Publication Type: Article / Article
  • Volume: 21 Issue: 1
  • Publication Date: 2016
  • Journal Name: MATHEMATICAL COMMUNICATIONS
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.109-114

Abstract

We prove that for any positive integer m there exists a positive real number N-m such that whenever the integer n >= m neither the product P-m(n) = ((m + 1)(2) + 1) ((m + 2)(2) + 1) ... (n(2) + 1) nor the product Q(m)(n) = ((m + 1)(3) + 1)((m + 2)(3) + 1) ... (n(3) + 1) is a square.