Genetic algorithm-Monte Carlo hybrid geometry optimization method for atomic clusters


Dugan N., ERKOÇ Ş.

COMPUTATIONAL MATERIALS SCIENCE, cilt.45, sa.1, ss.127-132, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 1
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1016/j.commatsci.2008.03.045
  • Dergi Adı: COMPUTATIONAL MATERIALS SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.127-132
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this work, an evolutionary type global optimization method for identifying the stable geometries of atomic clusters is developed and applied to carbon clusters for testing purpose. Monte Carlo (MC) type local optimization is used between genetic algorithm (GA) steps together with a special Mutation operation designed for the Cluster geometry optimization problem. Cluster geometries and the corresponding potential energies for carbon obtained with this GA-MC hybrid method are compared with available results in the literature and reliability of the method is justified for moderate sized carbon clusters. (C) 2008 Elsevier B.V. All rights reserved.