Geometric characterizations of existentially closed fields with operators


Pierce D.

ILLINOIS JOURNAL OF MATHEMATICS, cilt.48, ss.1321-1343, 2004 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 48 Konu: 4
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1215/ijm/1258138514
  • Dergi Adı: ILLINOIS JOURNAL OF MATHEMATICS
  • Sayfa Sayıları: ss.1321-1343

Özet

This paper concerns the basic model-theory of fields of arbitrary characteristic with operators. Simplified geometric axioms are given for the model-companion of the theory of fields with a derivation. These axioms generalize to the case of several commuting derivations. Let a D-field be a field with a derivation or a difference-operator, called D. The theory of D-fields is companionable. The existentially closed D-fields can be characterized geometrically without distinguishing the two cases in which D can fall. The class of existentially closed fields with a derivation and a difference-operator is elementary only in characteristic 0.