Partial wave analysis of the first order Born amplitude of a Dirac particle in an Aharonov-Bohm potential


Creative Commons License

Shikakhwa M., Pak N.

PHYSICAL REVIEW D, vol.67, no.10, 2003 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 67 Issue: 10
  • Publication Date: 2003
  • Doi Number: 10.1103/physrevd.67.105019
  • Journal Name: PHYSICAL REVIEW D
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Middle East Technical University Affiliated: No

Abstract

A partial wave analysis using the basis of the total angular momentum operator J(3) is carried out for the first order Born amplitude of a Dirac particle in an Aharonov-Bohm potential. It is demonstrated that the s partial wave contributes to the scattering amplitude in contrast with the case with scalar nonrelativistic particles. We suggest that this explains the fact that the first order Born amplitude of a Dirac particle coincides with the exact amplitude expanded to the same order, where it does not for a scalar particle. An interesting algebra involving the Dirac velocity operator and the angular observables is discovered and its consequences are exploited.