Transient simulation of internal separated flows using an intelligent higher-order spatial discretization scheme


Oymak O., Selcuk N.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, cilt.24, sa.8, ss.759-769, 1997 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 8
  • Basım Tarihi: 1997
  • Dergi Adı: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.759-769
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

This paper summarizes the method-of-lines (MOL) solution of the Navier-Stokes equations for an impulsively started incompressible laminar flow in a circular pipe with a sudden expansion. An intelligent higher-order spatial discretization scheme, which chooses upwind or downwind discretization in a zone-of-dependence manner when flow reversal occurs, was developed for separated flows. Stability characteristics of a linear advective-diffusive equation were examined to depict the necessity of such a scheme in the case of flow reversals. The proposed code was applied to predict the time development of an impulsively started flow in a pipe with a sudden expansion. Predictions were found to show the expected trends for both unsteady and steady states. This paper demonstrates the ease with which the Navier-Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs). Solutions of the Navier-Stokes equations in primitive variables formulation by using the MOL and intelligent higher-order spatial discretization scheme are not available to date. (C) 1997 by John Wiley & Sons, Ltd.