APPLIED SURFACE SCIENCE, cilt.714, 2025 (SCI-Expanded, Scopus)
This study employs plasma-enhanced chemical vapor deposition (PECVD) to address the limitations of conventional techniques in fabricating pressure-sensitive adhesive (PSA) thin films and to introduce advanced functionalities. PECVD provides a solvent-free, environmentally sustainable approach, allowing precise control over film composition and properties. PSA thin films were synthesized using varying feed ratios of 2-ethylhexyl acrylate (EHA) and acrylic acid (AA) monomers. The optimized PSA film was synthesized at a substrate temperature of 5 degrees C, reactor pressure of 150 mTorr, plasma power of 50 W, and an AA/EHA monomer flow rate ratio of 1.5. The chemical, physical, and mechanical characteristics of the films were systematically evaluated. The optimized film demonstrated a shear strength of 158 N/cm2 and a peel strength of 0.87 N/25 mm. Furthermore, the film exhibited excellent solvent resistance and high durability.