Post-extrusion heat-treatment as a facile method to enhance the mechanical properties of extruded xylan-based polymeric materials


AKKUS M., BAHÇEGÜL E., ÖZKAN N. , Bakir U.

RSC ADVANCES, cilt.4, ss.62295-62300, 2014 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 4 Konu: 107
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1039/c4ra10478a
  • Dergi Adı: RSC ADVANCES
  • Sayfa Sayıları: ss.62295-62300

Özet

Hemicelluloses are among the most abundant renewable polymers in nature, and their processing into biodegradable polymeric materials via extrusion was recently reported as a novel alternative technique for solvent casting. A simple heat-treatment step conducted after the extrusion of corn cob xylans was found to enhance the mechanical properties of strips by altering their moisture absorption behavior. Depending on the heat-treatment temperature, which varied between 60 degrees C and 150 degrees C, xylan- based strips with an ultimate tensile strength greater than 120 MPa, elongation at break of around 30% and elastic modulus of approximately 1.2 GPa were obtained. The equilibrium moisture content of the strips decreased with increasing heat-treatment temperature. Considering that water acts as a plasticizer for hemicellulose based materials, the changes in the mechanical properties were found to be associated with the changes in the equilibrium moisture contents of the strips.