IISE TRANSACTIONS, cilt.52, sa.6, ss.651-664, 2020 (SCI-Expanded)
Preference functions have been widely used to scalarize multiple objectives. Various forms such as linear, quasiconcave, or general monotone have been assumed. In this article, we consider a general family of functions that can take a variety of forms and has properties that allow for estimating the form efficiently. We exploit these properties to estimate the form of the function and converge towards a preferred solution(s). We develop the theory and algorithms to efficiently estimate the parameters of the function that best represent a decision maker's preferences. This in turn facilitates fast convergence to preferred solutions. We demonstrate on a variety of experiments that the algorithms work well both in estimating the form of the preference function and converging to preferred solutions.