On Spin dependence of the Fundamental Plane of black hole activity


Creative Commons License

Unal C., Loeb A.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, cilt.495, sa.1, ss.278-284, 2020 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 495 Sayı: 1
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1093/mnras/staa1119
  • Dergi Adı: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, zbMATH, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.278-284
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

The Fundamental Plane (FP) of black hole (BH) activity in galactic nuclei relates X-ray and radio luminosities to BH mass and accretion rate. However, there is a large scatter exhibited by the data, which motivated us for a new variable. We add BH spin as a new variable and estimate the spin dependence of the jet power and disc luminosity in terms of radio and X-ray luminosities. We assume the Blandford-Znajek process as the main source of the outflow, and find that the jet power depends on BH spin stronger than quadratically at moderate and large spin values. We perform a statistical analysis for 10 active galactic nuclei (AGNs) which have sub-Eddington accretion rates and whose spin values are measured independently via the reflection or continuum-fitting methods, and find that the spin-dependent relation describes the data significantly better. This analysis, if supported with more data, could imply not only the spin dependence of the FP relation, but also the Blandford-Znajek process in AGN jets.