3D Simulation of Dynamic Delamination in Curved Composite Laminates


Ata T. T., ÇÖKER D.

1st International Workshop on Plasticity, Damage and Fracture of Engineering Materials (IWPDF), Ankara, Türkiye, 22 - 23 Ağustos 2019, cilt.21, ss.130-137 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 21
  • Doi Numarası: 10.1016/j.prostr.2019.12.094
  • Basıldığı Şehir: Ankara
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.130-137
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this study, dynamic fracture of curved carbon fiber reinforced plastic (CFRP) laminates under quasi-static loading is investigated using explicit three dimensional (3D) finite element method in conjunction with Cohesive Zone Modelling (CZM). The simulations are based on the experimental studies conducted by Tasdemir (2018). Three dimensional finite element models of two different ply architectures (unidirectional and fabric laminate) are generated corresponding to the experimental configurations. The computational results show good correlation with the experimental results in which a major delamination is observed approximately at 35% of the thickness for both unidirectional and fabric curved laminates. It is also observed that delamination initiates at the half width of the laminate for both specimen configurations. For the fabric laminate, it is interesting to observe that the delamination initiates at the center of the width instead of the free-edges where a material mismatch exists between different layer orientations (Cao et al., 2019; Lagunegrand et al., 2006; Solis et al., 2018). Finite element analysis results are consistent with experiments in terms of main delamination location in thickness direction. (c) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the 1st International Workshop on Plasticity, Damage and Fracture of Engineering Materials organizers