Efficient solution of the electric-field integral equation using the iterative LSQR algorithm


Creative Commons License

Ergul O., Gurel L.

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol.7, pp.36-39, 2008 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 7
  • Publication Date: 2008
  • Doi Number: 10.1109/lawp.2007.908008
  • Journal Name: IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.36-39

Abstract

In this letter, we consider iterative solutions of the three-dimensional electromagnetic scattering problems formulated by surface integral equations. We show that solutions of the electric-field integral equation (EFIE) can be improved by employing an iterative least-squares QR (LSQR) algorithm. Compared to many other Krylov subspace methods, LSQR provides faster convergence and it becomes an alternative choice to the time-efficient no-restart generalized minimal residual (GMRES) algorithm that requires large amounts of memory. Improvements obtained with the LSQR algorithm become significant for the solution of large-scale problems involving open surfaces that must be formulated using EFIE, which leads to matrix equations that are usually difficult to solve iteratively, even when the matrix-vector multiplications are accelerated via the multilevel fast multipole algorithm.