Bond-based peridynamic fatigue analysis of ductile materials with Neuber’s plasticity correction


Altay U., Dorduncu M., KADIOĞLU F. S., Madenci E.

Engineering with Computers, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s00366-024-02092-x
  • Dergi Adı: Engineering with Computers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Anahtar Kelimeler: Crack, Fatigue, Neuber’s rule, Peridynamics, Plasticity, Stop hole
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

This study introduces an approach for performing bond-based (BB) peridynamic (PD) fatigue analysis of ductile materials. Existing BB PD fatigue models do not account for the effect of plastic deformation. The current approach addresses this by incorporating Neuber’s plasticity correction concept into the fatigue model. Neuber’s correction adjusts the stress and strain predictions of the PD elastic solution to account for local plastic deformation around crack tips. The PD fatigue simulations demonstrate the effectiveness of this method and improvements in fatigue life predictions by considering local plasticity effects. The numerical results first examine the response of a ductile plate without a crack under quasi-static monotonic loading. Subsequently, specimens exhibiting Mode I and mixed-mode crack propagation paths due to cyclic loading are analyzed. The PD predictions accurately capture the test data. Additionally, the model specifically investigates the effect of a stop hole on fatigue life.