Reliability prediction for aircraft fleet operators: A Bayesian network model that combines supplier estimates, maintenance data and expert judgement


Kucuker F. U., Yet B.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, cilt.74, sa.10, ss.2187-2198, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 74 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/01605682.2022.2129486
  • Dergi Adı: JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, IBZ Online, International Bibliography of Social Sciences, Periodicals Index Online, ABI/INFORM, Applied Science & Technology Source, Business Source Elite, Business Source Premier, Compendex, Computer & Applied Sciences, INSPEC, zbMATH
  • Sayfa Sayıları: ss.2187-2198
  • Anahtar Kelimeler: Bayesian networks, aircraft fleet reliability, reliability prediction, information fusion, SOFTWARE, SYSTEM, INFERENCE
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Reliability prediction is crucial for aircraft maintenance and spare part inventory decisions. These predictions are made based on operational data collected by fleet operators or design life estimates provided by aircraft suppliers. Purely data-driven predictions have limited use especially when the fleet is young, hence the data is scarce. In this case, design life estimates are used for predicting reliability often by assuming a constant failure rate. This strong assumption is not necessarily valid for all components. This paper proposes a Bayesian Network (BN) modelling framework that systematically combines design life estimates, operational data, and expert judgement for reliability prediction of aircraft subsystems. The proposed BN adjusts the design life estimates based on expert judgement regarding supplier and manufacturing quality and revises it based on operational data. We used the BN to predict the reliability of a large aircraft fleet by using failure and maintenance data provided by a large fleet operator. We compared the predictive performance of the BN to using only data-driven approaches and to using only design life estimates provided by the aircraft supplier. The BN model provides consistently accurate reliability predictions compared to design-life estimates and purely data-driven approaches especially when the available data is scarce.