Chirality of real non-singular cubic fourfolds and their pure deformation classification


Creative Commons License

Finashin S., Kharlamov V.

REVISTA MATEMATICA COMPLUTENSE, cilt.34, sa.1, ss.19-41, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s13163-020-00351-1
  • Dergi Adı: REVISTA MATEMATICA COMPLUTENSE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, DIALNET
  • Sayfa Sayıları: ss.19-41
  • Anahtar Kelimeler: Real cubic fourfold, Deformation chirality, Period map, Coxeter graphs, MODULI SPACE, HYPERBOLIC GEOMETRY
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.