Analysis of variance and linear contrasts in experimental design with generalized secant hyperbolic distribution


Yilmaz Y. E., AKKAYA A.

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, cilt.216, sa.2, ss.545-553, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 216 Sayı: 2
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1016/j.cam.2007.06.001
  • Dergi Adı: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.545-553
  • Anahtar Kelimeler: experimental design, non-normality, generalized secant hyperbolic, modified maximum likelihood, linear contrast, robustness, NON-NORMALITY, ROBUSTNESS, LOCATION, SAMPLES, RATIO
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

We consider one-way classification model in experimental design when the errors have generalized secant hyperbolic distribution. We obtain efficient and robust estimators for block effects by using the modified maximum likelihood estimation (MML) methodology. A test statistic analogous to the normal-theory F statistic is defined to test block effects. We also define a test statistic for testing linear contrasts. It is shown that test statistics based on MML estimators are efficient and robust. The methodology readily extends to unbalanced designs. (C) 2007 Elsevier B.V. All rights reserved.