Species on the move: Impacts of climate change on the spatial range of endemic fishes of the eco-sensitive semi-arid area of the Arabian Peninsula


Masoumi A. H., Esmaeili H. R., Khosravi R., Gholamhosseini A., KORKMAZ M., JEPPESEN E.

Science of the Total Environment, cilt.947, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 947
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.scitotenv.2024.174095
  • Dergi Adı: Science of the Total Environment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Anthropogenic impacts, Biodiversity, Conservation, Freshwater ecosystems, Species distribution modeling
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Climate change is one of the most significant challenges worldwide in the Anthropocene, and it is predicted to importantly affect biological diversity, especially in freshwaters. Freshwater fishes are facing considerable global threats, particularly in eco-sensitive semi-arid to arid areas such as the Arabian Peninsula, which is considered a highly stressed region in the Middle East. Endemic species are believed to display a narrow range of traits, with rarity reflecting adaptation to specific environmental regimes, and they are thus highly sensitive to environmental disturbances. This study is the first attempt to map the occurrence of endemic freshwater fish species and predict the impact of climate change on their spatial range in the semi-arid area of the Arabian Peninsula using Species Distribution Modeling (SDM). We compared the present and future (2041–2060 and 2061–2080) climate niche for the species under various climatic scenarios. All global circulation models (GCMs) performed well in predicting the species' climatic niche (AUC ranging between 0.72 and 0.92). For certain species (Cyprinion acinaces, Garra buettikeri, Carasobarbus exulatus, Arabibarbus arabicus, and Cyprinion mhalense), variables associated with precipitation were more important than those related to temperature, while for others (Carasobarbus apoensis, G. sahilia, G tibanica, and Aphaniops kruppi), temperature-related variables were most important. Precipitation in the coldest quarter and in the driest quarter was the most sensitive variable for the predictions. The species showed distinct responses to climate change; seven were predicted to lose their climatically suitable habitats (losers) and are thus threatened and highly vulnerable to the effects of climate change, while two species were predicted to expand their range (winners). Regular monitoring of fish in the Arabian Peninsula is recommended to conserve endemic species and their ecosystems.