Robust control for line-of-sight stabilization of a two-axis gimbal system


Baskin M., Leblebicioglu K.

TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, cilt.25, sa.5, ss.3839-3854, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 5
  • Basım Tarihi: 2017
  • Doi Numarası: 10.3906/elk-1606-435
  • Dergi Adı: TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.3839-3854
  • Anahtar Kelimeler: LQG/LTR, H-infinity, mu-synthesis, two-axis gimbal, robust multivariable control
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Line-of-sight stabilization against various disturbances is an essential property of gimbaled imaging systems mounted on mobile platforms. In recent years, the importance of target detection from higher distances has increased. This has raised the need for better stabilization performance. For that reason, stabilization loops are designed such that they have higher gains and larger bandwidths. As these are required for good disturbance attenuation, sufficient loop stability is also needed. However, model uncertainties around structural resonances impose strict restrictions on sufficient loop stability. Therefore, to satisfy high stabilization performance in the presence of model uncertainties, robust control methods are required. In this paper, a robust controller design in LQG/LTR, H-infinity, and mu-synthesis framework is described for a two-axis gimbal. First, the performance criteria and weights are determined to minimize the stabilization error with moderate control effort under known platform disturbance profile. Second, model uncertainties are determined by considering locally linearized models at different operating points. Next, robust LQG/LTR, H-infinity and mu controllers are designed. Robust stability and performance of the three designs are investigated and compared. The paper finishes with the experimental performances to validate the designed robust controllers.