International Journal of Advanced Manufacturing Technology, cilt.128, sa.11-12, ss.4981-4996, 2023 (SCI-Expanded)
Frequency response functions (FRFs) are one of the most useful methods for representing machine tool dynamics under force excitation. FRFs are usually obtained empirically through output measurements, and force excitations are controlled by an external device such as hammers or shakers. This study offers an operational identification method that utilizes the calculation of force applied during the process as an input for FRF identification. Force excitation is provided through the face milling of a thin-walled workpiece, and acceleration measurements are taken during the process. The FRF is calculated at a designated position by sampling workpiece-cutting tool contacts as individual tap tests and substituting a force calculation as input. Force coefficients need to be known for the force calculation. An experimental force coefficient identification method is proposed. In that case, a similar thin-walled workpiece at a point with known FRF and acceleration measurements is utilized. Results are confirmed with FRFs obtained in the same location for both FRF identification and force coefficient identification approaches.