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Abstract— Practical realization of model-based dynamic
legged behaviors is substantially more challenging than stati-
cally stable behaviors due to their heavy dependence on second-
order system dynamics. This problem is further aggravated by
the difficulty of accurately measuring or estimating dynamic
parameters such as spring and damping constants for associated
models and the fact that such parameters are prone to change
in time due to heavy use and associated material fatigue. In
this paper, we present an on-line, model-based adaptive control
method for running with a planar spring-mass hopper based on
a once-per-step parameter correction scheme. Our method can
be used both as a system identification tool to determine possibly
time-varying spring and damping constants of a miscalibrated
system, or as an adaptive controller that can eliminate steady-
state tracking errors through appropriate adjustments on
dynamic system parameters. We present systematic simulation
studies to show that our method can successfully accomplish
both of these tasks.

I. INTRODUCTION

The utility of legged morphologies and associated dynamic

behaviors for robust and efficient locomotion across rough

terrain has long been established [15, 31]. Nevertheless,

despite the discovery of simple mathematical models [8, 18,

28] and associated analytical solutions [2, 13, 24] that can ac-

curately describe biological runners and support the design of

hierarchical controllers for complex legged morphologies [3,

20, 23, 26], physical realization of dynamic legged behaviors

has mostly been based on intuition and manual tuning [1, 22,

25, 31] with a few notable exceptions [10, 11]. More recently,

however, there has been increasing interest in using model-

based analysis and control methods in this context [19, 21],

with experimental success for some behaviors [27].

However, even though dynamic models for which we

have a sufficiently good analytic understanding can support

physically relevant controller designs, the measurement and

estimation of particularly the dynamic parameters, such as

spring and damping constants for flexible components of

a robotic platform, is still a challenging problem. This

problem is further aggravated by the possibly time-varying

and unpredictable nature of these parameters for autonomous

platforms that may remain operational for extended durations

of time. Fortunately, this issue is not confined to the control

of legged locomotion and received considerable attention

from the adaptive control community [5, 17]. Motivated by

work in this area, this paper presents a new model-based
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adaptive control method for running with the well-known

Spring-Loaded Inverted Pendulum (SLIP) model (see Fig. 1),

emphasizing on-line estimation of unknown or miscalibrated

dynamic system parameters.
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Fig. 1. The Spring-Loaded Inverted Pendulum (SLIP) model. Dashed curve
illustrates a single stride from one apex event to the next, defining the return
map Xn+1 = f(Xn,un).

In contrast to the approach we adopt in this paper,

existing research on adaptive control of legged locomo-

tion almost exclusively focuses on how cyclic behaviors of

the mechanical locomotor dynamics can be tuned through

their coupling with independently running internal clocks

(Central Pattern Generators, CPGs) whose dynamics can

then be controlled at lower bandwidth [7, 9, 12, 16]. These

methods mirror established principles from neurobiology,

where groups of neurons in simple organisms were found

to remain functional in isolation, producing cyclic control

signals even without any high-level control authority [14].

Similar to controller designs based on neural networks and

learning [6, 30], such approaches are advantageous in their

ability to operate without accurate models, increasing their

robustness under unknown environmental conditions such as

rough terrain. On the other hand, their structure is often

not suitable for incorporating accurate mathematical models

when they are in fact available.

Our adaptive control method is based on recently pro-

posed analytic approximations to SLIP dynamics [24], briefly

described in Section II. Similar to previous studies, we

use a once-per-step deadbeat control strategy that relies

on the inversion of an approximate return map for this

system. However, unlike previous controllers which assume

perfect knowledge of dynamic system parameters (spring and

damping constants in particular), and ignore the effects of

miscalibrated parameters illustrated in Fig. 2, our adaptive

controller described in Section III explicitly considers and
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Fig. 2. Impact of miscalibrated dynamic parameters on SLIP trajectory
predictions. Arrows indicate directions of change in the apex as a result of
increasing k and d. The curve in the middle shows the unperturbed trajectory
while the dotted curves show trajectories with different parameter values.

compensates for such errors. We provide simulation results

in Section IV, systematically evaluating the performance of

our method in the presence of parameter and modeling errors.

II. THE SLIP MODEL

The SLIP model, illustrated in Fig. 1, consists of a point

mass attached to a massless leg with a linear spring k and

viscous damping d. During running, this model alternates

between stance and flight phases with the toe fixed on the

ground during the former and the body following a ballistic

trajectory during the latter. The highest point in the flight

phase is defined as the apex point for each stride with the

associated state of the system for the nth stride defined as

Xn := [ zn, ẏn ]T . (1)

We will also find it convenient to collect relevant dynamic

parameters of the system in a single vector as

p := [ k, d ]T . (2)

Control of SLIP locomotion is achieved through three

discrete control inputs at every stride: The leg angle θt and

leg length ρt at touchdown, transitioning from flight to stance

and the leg length ρl at liftoff, transitioning from stance

to flight. Given the control input vector u := [θt ,ρt ,ρl ], a

Poincaré section at apex with ż = 0 enables us to define a

discrete apex return map as

Xn+1 = fp(Xn,un) . (3)

where the dependence of the map on the dynamic parameters

p is explicitly shown. Table I details the notation we use

throughout the paper.

Unfortunately, stance dynamics of the SLIP model are not

integrable in closed form, making it impossible to find exact

analytic expressions for the apex return map [28]. Conse-

quently, in the present paper, we use analytic approximations

proposed by Ankarali [24] (AAS approximations), which

can successfully incorporate the effects of both damping and

gravity. We now define a new, approximate return map as

X̂n+1 = f̂p(Xn,un) . (4)

TABLE I

NOTATION USED THROUGHOUT THE PAPER

SLIP States and Parameters

ρt ,θt Touchdown leg length and angle
ρl ,θl Liftoff leg length and angle

y,z, ẏ, ż Body positions and velocities
za, ẏa Apex height and velocity

Return Maps and Parameters

f Exact plant model

f̂ Analytic approximate solution
k,d Actual values of spring and damping constants

k̂, d̂ Estimated values of spring and damping constants

Details of how this approximate map is derived can be found

in [24]. During running, our adaptive control performs once-

per-step corrections to the dynamic parameters in p, to which

both of these return maps depend on. Consequently, we will

find it useful to capture the dependence of apex velocity and

height coordinates to these parameters through the Jacobian

matrices of both of these return maps. For both the exact

plant model and the AAS approximations, the associated

Jacobians are defined as

J := ∂ f/∂p =

[

∂ ẏi+1/∂k ∂ ẏi+1/∂d

∂ zi+1/∂k ∂ zi+1/∂d

]

, (5)

ĴAAS := ∂ f̂/∂p =

[

∂ ˆ̇yi+1/∂k ∂ ˆ̇yi+1/∂d

∂ ẑi+1/∂k ∂ ẑi+1/∂d

]

. (6)

While we derive ĴAAS analytically by simple differentiation

of the approximations given in [24], we will use numerical

differentiation to compute the plant Jacobian J in the com-

parative experimental results of Section IV.

III. ADAPTIVE CONTROL OF SLIP RUNNING

In the presence of a sufficiently accurate model, gait con-

trol of the SLIP model can be achieved through a deadbeat

strategy as described in [24]. Given a desired apex state X∗,

inversion of the apex return map for the z and ẏ components

of the state yields the controller

u = f̂−1
p̂ (X∗,Xn) . (7)

Calibration
Experiments

Physical
SLIP Plant

Deadbeat
Controller

X∗

Xn

Xn+1

u

u = f̂−1

p̂
(X∗, Xn) Xn+1 = fp(Xn,u)

p̂

Fig. 3. Deadbeat SLIP gait control through the inversion of the approximate
plant model.

Note, however, that the approximate return map and hence

its inversion can only rely on possibly inaccurate parameter

estimates p̂ for spring and damping constants. As shown

in the block diagram of Fig. 3, these estimates are often

obtained through calibration experiments on the platform but

may not provide sufficiently good accuracy.

The core of our adaptive control strategy relies on once-

per-step corrections to these estimates based on the difference
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between predicted and measured apex states for each apex.

This corrective parameter adjustment is very similar to how

estimation methods such as Kalman filters use innovation on

sensory measurements to perform state updates [29].

Parameter
Adjustment

Approximate
SLIP Model

Physical
SLIP Plant

Deadbeat
Controller

X∗
Xn+1

X̂n+1

Xn u

u = f̂−1

p̂n

(X∗, Xn) Xn+1 = fp(Xn,u)

X̂n+1 = gp̂n
(Xn,u)

p̂n

Fig. 4. The proposed adaptive control strategy. Prediction errors of an
approximate plant model g (computed either using exact plant simulations
f or AAS approximations f̂) are used to dynamically adjust parameter
estimates p̂n.

Fig. 4 illustrates the block diagram for the adaptive param-

eter correction scheme we propose in this paper. Our method

relies on the availability of an approximate return map g that

can predict the apex state outcome of a single step, given the

apex states of the previous step Xn and associated control

inputs un. In this paper, we consider two alternatives for this

approximate predictor model:

1) Exact SLIP Model (ESM): This alternative uses g =
f, computed through numerical simulation of SLIP

dynamics. The associated Jacobian J is also computed

numerically.

2) Approximate Analytic Solution (AAS): This option uses

g = f̂, adopting the approximate analytic solutions of

[24] as a predictor for SLIP trajectories. The associated

Jacobian ĴAAS is analytically derived through straight-

forward differentiation.

As we will show in Section IV, the first option is useful

for accurate identification of the dynamic parameters of

the system, whereas the second option will be useful in

eliminating steady-state tracking errors for the gait-level

control of SLIP running and is much more suitable for real-

time implementation on a physical platform.

Regardless of which predictor is chosen, an apex state

prediction error is computed at every step as

e := Xn+1 − X̂n+1 = fp(Xn,u)−gp̂n
(Xn,u) . (8)

Note that the computation of this error requires measure-

ment of actual apex states Xn+1 at every stride, which

can be accomplished through proper instrumentation and

state estimation techniques. More importantly, however, the

predictor is expected to use the updated estimates of dynamic

system parameters p̂n rather than their unknown physical

values experienced by the SLIP plant, making it relevant in

computing corrections on these parameters.

The goal of our adaptive control approach is to bring the

steady-state value of this prediction error to zero. In other

words, we seek to have

lim
n→∞

(X̂n −Xn) = 0 , (9)

which will also indirectly yield steady-state parameter esti-

mates as

p̂ = lim
n→∞

(p̂n) . (10)

We accomplish both of these goals using a conceptually

simple yet effective parameter adjustment strategy based on

the Jacobians defined in (5) and (6). By definition, these

Jacobian matrices relate infinitesimal changes in the apex

state predictions to infinitesimal changes in the dynamic

system parameters with

δ X̂n+1 = (∂g/∂p)
∣

∣

Xn
δp . (11)

Based on this relation and the prediction errors computed at

every stride, we propose the parameter update strategy

p̂n+1 = p̂n +Ke ( ∂g/∂p )−1
∣

∣

Xn
e (12)

where Ke < 1 is a gain coefficient that can be used to tune

convergence and prevent oscillatory behavior. This yields

an on-line adaptation mechanism that can be used for both

predictor choices, with the ESM choice resulting in accurate

system identification and the AAS choice yielding adaptive

gait control as we will show in Section IV.

It is important to note that practical applicability of our

adaptive control method inevitably depends on the accuracy

of the underlying SLIP model. Even though the linear spring

model we use in this paper was previously shown to result

in resonable predictive accuracy for biological runners [28],

extensions to the model and the associated analytical approx-

imations may be needed for systems with more complex,

nonlinear springs.

IV. PERFORMANCE ANALYSIS

A. Simulation Environment and Performance Criteria

The two related but different goals of our adaptive control

method are the estimation of unknown or miscalibrated

dynamic system parameters and accurate tracking of desired

apex states. Both of these goals can be defined as a function

of the steady-state behavior of the system. Consequently, we

define three different percentage error measures

SSEk := 100 lim
n→∞

( |k̂n − k|/k ) , (13)

SSEd := 100 lim
n→∞

( |d̂n −d|/d ) , (14)

SSEa := 100 lim
n→∞

(|| Xn −X∗||/|| X∗||) , (15)

with SSEk and SSEd capturing system identification perfor-

mance and SSEa characterizing the tracking performance of

the adaptive controller.
TABLE II

SIMULATION APEX GOAL AND PARAMETER RANGES

z∗a ẏ∗a k d m
(m) (m/s) (N/m) (Ns/m) (kg)

[1.25, 1.75] [1.25, 2.75] [800, 2000] [3, 15] 1

In order to characterize the performance of our adaptive

control strategy, we ran a large number of simulations using

different apex goal settings X∗ as well as different choices
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of dynamic parameters p within ranges specified in Table II,

chosen to be consistent with biomechanics literature [4] as

well as existing legged robots [25] to increase the relevance

of our results. The hybrid SLIP plant dynamics in Figures 3

and 4 were simulated in Matlab using a fourth-order, adaptive

time-step Runge-Kutta integrator with exact detection of

touchdown and liftoff events. Simulations were run until

steady-state was reached with a tolerance of 10−4 in the

norm of the apex state. Steady-state trajectories were found

to be independent of initial apex states. However, since the

convergence behavior of (12) depends on the choice of the

predictor and the update gain, we will consider different

initial parameter estimates p0 for our simulations.

B. Accurate Control with the AAS Predictor

In this section, we present apex goal tracking simulations

with the AAS predictor introduced in Section III. Before we

proceed with more systematic performance results, however,

Fig. 5 illustrates an example SLIP simulation started with a

non-adaptive controller in the presence of 20% errors for

the estimates of both the spring and damping constants,

with subsequent activation of our adaptive controller using

the AAS predictor around t = 2s, finally followed by a step

change in the apex goal around t = 4.55s.

As expected, using the non-adaptive controller with mis-

calibrated dynamic parameters results in a substantial steady-

state error due to prediction errors in the analytic approxi-

mations of [24]. When the adaptive controller is switched on

around t = 2s, this error is quickly eliminated and estimated

values of both the spring and damping constants quickly

converge towards their physical values as shown in Fig. 5.

The last five steps of the simulation shows that steady-state

tracking remains accurate even when a step input with a large

magnitude is given to the system.
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Fig. 5. An example SLIP simulation started with a non-adaptive controller
(dark shaded region) and 20% error in both the spring and damping
constants. Our adaptive controller with the AAS predictor was started around
t = 2s and a step change in the apex goal was given around t = 4.55s.

More generally, Fig. 6 illustrates the average tracking

performance of our adaptive controller across the range of
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Fig. 6. Steady-state apex goal tracking errors for the non-adaptive, AAS
adaptive and ESM adaptive controllers. Error measures were averaged across
321489 simulation runs with different goals and initial parameter estimates.
Vertical bars show standard deviations and were omitted for the non-adaptive
case since they were very large.

apex goals and parameter choices given in Table II corre-

sponding to 321489 simulation runs. The top and bottom

plots respectively show the dependence of average errors

and their standard deviations on the initial deviations of the

spring and damping constants for a non-adaptive controller as

well as our adaptive controller with both the AAS and ESM

predictors. As expected, the non-adaptive controller results

in large tracking errors (with very high standard deviations,

omitted from the figure for clarity) whereas the AAS Adaptive

controller reduces the steady state error to zero. Average apex

tracking and parameter estimation errors and their standard

deviations across all simulations are also given in Table III.

It may be surprising that the AAS predictor outperforms the

ESM predictor based on the exact SLIP model for apex goal

tracking. However, note that the deadbeat controller of (7) is

based on the inversion of the AAS analytic approximations.

Naturally, when dynamic system parameters are adapted such

that the predictions of these approximations are error-free,

the resulting controller achieves zero tracking error in steady-

state. In contrast, while the ESM predictor can accurately

estimate the dynamic parameters as shown in Section IV-C,

some remaining prediction errors still remain, leading to the

small steady-state tracking errors of Fig. 6.
TABLE III

PERCENTAGE APEX TRACKING AND PARAMETER ESTIMATION ERRORS

Error Measure: SSEa SSEk SSEd

Non-adaptive 6.56±4.64 10±6.20 10±6.20

AAS Adaptive 0.002±0.001 2.34±1.45 5.53±2.81

ESM Adaptive 0.52±0.45 0.0008±0.0005 0.007±0.005

Finally, Fig. 7 shows a comparison of the dynamic tracking

performance for the non-adaptive controller and our adaptive

controller with the AAS predictor. Once again, our controller

quickly converges to the desired trajectory, outperforming

the non-adaptive controller which suffers from miscalibrated

parameter estimates. These results show that the proposed
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Fig. 7. Apex height (top) and speed (bottom) tracking performance for a
sinusoidal reference trajectory. Each data point corresponds to a single apex
event.

controller can maintain accurate tracking even for dynamic

goal settings and not just for a single static target.

C. System Identification with the ESM Predictor

In this section, we present the system identification per-

formance of our algorithm with the ESM predictor. Fig. 8

shows an example SLIP simulation similar to the example

of the previous section, but with the ESM predictor instead.

Once again, the first three steps were controlled with the non-

adaptive strategy, activating the adaptive controller at t = 2s

and finally initiating a step change in the apex goal setting

at t = 4.55s.
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Fig. 8. An example SLIP simulation started with a non-adaptive controller
(dark shaded region) and 20% error in both the spring and damping
constants. Our adaptive controller with the ESM predictor was started
around t = 2s and a step change in the apex goal was given around t = 4.55s.

In contrast to the AAS predictor, the use of the ESM

predictor allows better estimation of unknown dynamic pa-

rameters at the expense of steady-state tracking accuracy.

This can be observed in the bottom two plots of Fig. 8
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(bottom) constants using the AAS adaptive and ESM adaptive controllers.
Error measures were averaged across 321489 simulation runs with different
goals and initial parameter estimates. Vertical bars show standard deviations.

as well as the corresponding columns of Table III showing

an increase in the average apex tracking error. This is not

surprising since the elimination of prediction errors for the

exact SLIP predictor corresponds to exact identification of

the unknown dynamic parameters. For a physical robot, this

would be the best way to estimate the spring and damping

constants as accurately as possible.

Following this isolated example, Fig. 9 shows the pa-

rameter estimation performance of our adaptive method

both with the ESM and AAS predictors across a larger

range of apex goal and parameter settings. Since the non-

adaptive controller does not update parameter estimates in

any way, we have not included it in the error figures. Our

results for both the spring and damping constants show

that while the ESM predictor perfectly estimates system

parameters, the AAS predictor, which is much more practical

and computationally feasible for on-line application due to

its analytic nature, also performs very well and yields steady-

state parameter estimation errors well below the 10-15% that

would be expected from manual calibration alone.

In summary, our adaptive controller can be used both as

a system identification tool through the use of the ESM

predictor, or as an accurate gait controller for apex states with

the AAS predictor. The latter option is much more suitable

for on-line operation on a physical running robot since the

approximate solutions of [24] and associated Jacobians are

all formulated analytically, making them computationally

feasible. The ESM predictor, however, not only requires sim-

ulated trajectory predictions, but also incorporates numeric

differentiation around these simulated trajectories, making it

much more suitable for offline system identification.

Nevertheless, in all cases, our adaptive methods perform

much better than the non-adaptive approach both for gait

control and system identification. Our contributions in this

paper clearly illustrate that when analytic solutions to the

dynamics of a legged platform are available, their structure

and efficiency can be exploited to yield effective solutions
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both for control and system identification.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel adaptive control al-

gorithm to both support on-line identification of unknown

dynamic system parameters and improve steady-state track-

ing performance of previously proposed control algorithms

for the well known SLIP model. Our method used as a

system identification tool addresses the practical difficulty

of measuring possibly time-varying dynamic system param-

eters such as spring and damping constants and associated

degradation in controller performance when they cannot be

correctly estimated. In contrast, our method used as an

adaptive controller allows effective elimination of steady-

state tracking errors under different types of modeling errors

for inverse dynamics controllers.

The choice between these two diferent modes of operation

depends on the choice of a predictor model against which

state measurements are compared at each step. We show

through systematic simulations that a predictor based on

numerical integration of SLIP dynamics is capable of accu-

rate system identification, whereas a predictor based on the

analytic approximations proposed in [24] allows elimination

of steady-state tracking errors for a deadbeat controller based

on the same approximations. Extensive simulation results

for both predictors show that they successfully realize these

objectives and substantially improve on control performance

relative to existing non-adaptive controllers.

Our longer term goal is to design legged platforms that can

reactively negotiate rough terrain. The applicability of math-

ematical models that are relevant for this purpose critically

depends on our ability to accurately estimate associated pa-

rameters to be used by model-based planners. Consequently,

starting from a direct implementation of the method we

propose in this paper on a monopedal platform, our future

work includes extensions to more complex legged models

and locomotion controllers. In this context, we believe that

our work shows some of the benefits offered by analytic

solutions to mathematical models of locomotory behaviors.

VI. ACKNOWLEDGMENTS

We thank M. Mert Ankaralı and Melih Çakmakçı for their
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