Invariant manifolds and Grobman-Hartman theorem for equations with degenerate operator at the derivative


Karasozen B., Konopleva I., Loginov B.

COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, cilt.2658, ss.533-541, 2003 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2658
  • Basım Tarihi: 2003
  • Dergi Adı: COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, EMBASE, MathSciNet, Philosopher's Index, zbMATH
  • Sayfa Sayıları: ss.533-541
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Analog of Grobman-Hartman theorem about stable and unstable manifolds solutions for differential equations in Banach spaces with degenerate Fredholm operator at the derivative are proved. In contrast to usual evolution equation here central manifold arises even in the case of spectrum absence on the imaginary axis. Jordan chains tools and implicit operator theorem are used. The obtained results allow to develop center manifold methods for computation of bifurcation solution asymptotics and their stability investigation.