In situ creep measurements on micropillar samples during heavy ion irradiation


Ozerinc S., Averback R. S., King W. P.

JOURNAL OF NUCLEAR MATERIALS, vol.451, pp.104-110, 2014 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 451
  • Publication Date: 2014
  • Doi Number: 10.1016/j.jnucmat.2014.03.037
  • Journal Name: JOURNAL OF NUCLEAR MATERIALS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.104-110
  • Middle East Technical University Affiliated: No

Abstract

We report on the development of an in situ micropillar compression apparatus capable of measuring creep under heavy ion beam irradiation. The apparatus has a force resolution of 1 mu N and a displacement resolution of 1 nm. The experimental setup consists of a nanopositioner, a laser displacement sensor, and a microfabricated doubly clamped silicon-beam transducer. The system was tested by measuring the creep rate of amorphous Cu56Ti38Ag6 micropillars as a function of applied stress during room temperature irradiation with 2.1 MeV Ne+. Measured values of the irradiation induced fluidity are in the range 0.5-3 dpa(-1) GPa(-1), and in good agreement with values obtained by stress relaxation experiments on other metallic glasses, and with predictions of molecular dynamics simulations. The in situ apparatus provides a practical approach for accelerated evaluation of irradiation induced creep in promising nuclear materials. (C) 2014 Elsevier B.V. All rights reserved.