Measurements of the pp → W± γγ and pp → Zγγ cross sections at √s = 13 TeV and limits on anomalous quartic gauge couplings


Creative Commons License

Tumasyan A., Adam W., Andrejkovic J., Bergauer T., Chatterjee S., Dragicevic M., ...More

Journal of High Energy Physics, vol.2021, no.10, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 2021 Issue: 10
  • Publication Date: 2021
  • Doi Number: 10.1007/jhep10(2021)174
  • Journal Name: Journal of High Energy Physics
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals
  • Keywords: Hadron-Hadron scattering (experiments), Particle and resonance production
  • Middle East Technical University Affiliated: Yes

Abstract

© 2021, The Author(s).The cross section for W or Z boson production in association with two photons is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 137 fb−1 collected by the CMS experiment at the LHC. The W → ℓν and Z → ℓℓ decay modes (where ℓ = e, μ) are used to extract the Wγγ and Zγγ cross sections in a phase space defined by electron (muon) with transverse momentum larger than 30 GeV and photon transverse momentum larger than 20 GeV. All leptons and photons are required to have absolute pseudorapidity smaller than 2.5. The measured cross sections in this phase space are σ(Wγγ) = 13.6−1.9+1.9(stat)−4.0+4.0(syst) ± 0.08 (PDF + scale) fb and σ(Zγγ) = 5.41−0.55+0.58(stat)−.070+0.64(syst) ± 0.06 (PDF + scale) fb. Limits on anomalous quartic gauge couplings are set in the framework of an effective field theory with dimension-8 operators. [Figure not available: see fulltext.]