Facile preparation of nanoparticle based SERS substrates for trace molecule detection


Demirta O., DOĞANAY D., ÖZTÜRK İ. M., ÜNALAN H. E., BEK A.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS, cilt.22, sa.37, ss.21139-21146, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 37
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1039/d0cp01866j
  • Dergi Adı: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chimica, Communication Abstracts, EMBASE, INSPEC, MEDLINE
  • Sayfa Sayıları: ss.21139-21146
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this work, we demonstrate that a polished Si wafer surface can be converted to possess strong surface-enhanced Raman scattering (SERS) activity by spray coating of polyol synthesized colloidal silver nanoparticles (AgNPs) at as low as 1% surface coverage. The SERS activity assays of substrate surfaces prepared with different production procedures (spray and spin coating) at different surface coverages are realized using population statistics. The resulting Raman enhancement factors (EFs) are discussed with the help of distance-dependent electromagnetic simulations for single particles and dimers. Statistics on the SERS effect and the corresponding EF calculations show that polyol synthesized AgNPs exhibit extremely strong SERS activity with EFs up to 10(8)at as low as 1% surface coverage. We discuss in this work that this is possible due to the distinct properties of polyol synthesized AgNPs such as atomically flat surfaces, sharp edges and corners naturally occurring in this synthesis method, which favor strong plasmonic activity. The method can be generalized to convert virtually any surface into a SERS substrate.