PFAFFIAN QUARTIC SURFACES AND REPRESENTATIONS OF CLIFFORD ALGEBRAS


COŞKUN E., Kulkarni R. S., Mustopa Y.

DOCUMENTA MATHEMATICA, cilt.17, ss.1003-1028, 2012 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17
  • Basım Tarihi: 2012
  • Dergi Adı: DOCUMENTA MATHEMATICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1003-1028
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Given a general ternary form f = f(x(1), x(2), x(3)) of degree 4 over an algebraically closed field of characteristic zero, we use the geometry of K3 surfaces and van den Bergh's correspondence between representations of the generalized Clifford algebra C f associated to f and Ulrich bundles on the surface X f := {w(4) = f(x(1), x(2), x(3))}. P-3 to construct a positive-dimensional family of 8-dimensional irreducible representations of C-f.