GW190521: A Binary Black Hole Merger with a Total Mass of 150 M


Abbott R., Abbott T., Abraham S., Acernese F., Ackley K., Adams C., ...Daha Fazla

Physical Review Letters, cilt.125, sa.10, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 125 Sayı: 10
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1103/physrevlett.125.101102
  • Dergi Adı: Physical Review Letters
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Compendex, EMBASE, INSPEC, MEDLINE, zbMATH, DIALNET
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85-14+21 Mm and 66-18+17 Mm (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 Mm. We calculate the mass of the remnant to be 142-16+28 Mm, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3-2.6+2.4 Gpc, corresponding to a redshift of 0.82-0.34+0.28. The inferred rate of mergers similar to GW190521 is 0.13-0.11+0.30 Gpc-3 yr-1.