Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing


Abbasi R., Ackermann M., Adams J., Agarwalla S., Aguilar J., Ahlers M., ...Daha Fazla

Physical Review D, cilt.108, sa.1, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 108 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1103/physrevd.108.012014
  • Dergi Adı: Physical Review D
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, INSPEC, zbMATH
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.