Histone proteomics implicates H3K36me2 and its regulators in mouse embryonic stem cell pluripotency exit and lineage choice


Terzi Çizmecioğlu N., Sezginmert D.

TURKISH JOURNAL OF BIOCHEMISTRY, cilt.48, sa.4, ss.351-361, 2023 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 4
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1515/tjb-2023-0030
  • Dergi Adı: TURKISH JOURNAL OF BIOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Food Science & Technology Abstracts, Directory of Open Access Journals
  • Sayfa Sayıları: ss.351-361
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Objectives

Gene expression changes during embryonic stem cell (ESC) differentiation is regulated by epigenetic mechanisms. Understanding these can help uncover how cell fate decisions are made during early embryonic development. Comparison of chromatin of ESCs with lineage-committed cells can implicate chromatin factors functional in exit from pluripotency and the choice of proper lineages. Therefore, we quantitatively analyzed histone modifications in mouse ESC differentiation towards neuroectoderm and endoderm.

Methods

We cultured mouse ESCs (mESCs) and differentiated them towards neuroectoderm or endoderm lineages and performed mass spectrometry on total histones. Subsequent Western blots verified significantly altered H3K36me2. RT-qPCR analyses showed changes in H3K36-specific methyltransferases, demethylases and readers at mESC stage or during neuroectoderm/endoderm commitment.

Results

We presented quantitative histone modification levels in mESCs and lineage-committed cells. H3K36me2 increased specifically in neuroectoderm compared to mESCs or endoderm-committed cells. Regulation of H3K36 methylation might have a role in pluripotency exit and/or differentiation. Nsd2Dnmt3b and Zmynd11 increased during differentiation regardless of lineage. Conversely, mESCs had higher Kdm4c and Msh6 expression than differentiated cells. Comparing neuroectoderm and endoderm-committed cells, we revealed Nsd1Setd5 and Dnmt3a had lineage specific expression pattern.

Conclusions

Our results show quantitative changes in histone modifications during mESC lineage commitment and implicate H3K36me2 regulation for not only pluripotency exit but also lineage choice. Its regulatory proteins show stage (mESC vs. committed) or lineage (neuroectoderm vs. endoderm) dependent expression changes. Further work will be needed to discover their possible involvement in cell fate decisions and target genes.