IEEE SIGNAL PROCESSING LETTERS, vol.18, no.6, pp.351-354, 2011 (SCI-Expanded)
The parameter estimation of a complex exponential waveform observed under white noise is typically tackled in two stages. In the first stage, a coarse frequency estimate is found by the application of an N-point DFT to the input of length N. In the second stage, a fine search around the peak determined in the first stage is conducted. The method proposed in this paper presents a simpler alternative. The method suggests a nonlinear relation involving three DFT samples already calculated in the first stage to produce a real valued, fine resolution frequency estimate. The estimator approaches Jacobsen's estimator for large N and presents a bias correction which is especially important for small and medium values of N.