Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect


Creative Commons License

Yuce E. , CTİSTİS G., CLAUDON J., GÉRARD J., Vos W. L.

OPTICS EXPRESS, cilt.24, sa.1, ss.239-253, 2016 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 24 Konu: 1
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1364/oe.24.000239
  • Dergi Adı: OPTICS EXPRESS
  • Sayfa Sayıları: ss.239-253

Özet

We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central lambda-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect. (C) 2016 Optical Society of America