17th International Conference on Information Security and Cryptology, Ankara, Turkey, 16 - 17 October 2024, (Full Text)
The ASCON algorithm was chosen for its efficiency and suitability for resource-constrained environments such as IoT devices. In this paper, we present a high-performance FPGA implementation of ASCON-128 and ASCON-128a, optimized for the throughput-to-area ratio. By utilizing a 6-round permutation in one cycle for ASCON-128 and a 4-round permutation in one cycle for ASCON-128a, we have effectively maximized throughput while ensuring efficient resource utilization. Our implementation shows significant improvements over existing designs, achieving 34.16% better throughput-to-area efficiency on Artix-7 and 137.58% better throughput-to-area efficiency on Kintex-7 FPGAs. When comparing our results on the Spartan-7 FPGA with Spartan-6, we observed a 98.63% improvement in throughput-to-area efficiency. However, it is important to note that this improvement may also be influenced by the advanced capabilities of the Spartan-7 platform compared to the older Spartan-6, in addition to the design optimizations implemented in this work.