Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy


Kilic E., ELMAZOĞLU Z., Almammadov T., KEPİL D., Etienne T., MARION A., ...More

ACS Applied Bio Materials, vol.5, no.6, pp.2754-2767, 2022 (ESCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 5 Issue: 6
  • Publication Date: 2022
  • Doi Number: 10.1021/acsabm.2c00202
  • Journal Name: ACS Applied Bio Materials
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus, BIOSIS, Compendex
  • Page Numbers: pp.2754-2767
  • Keywords: cancer, photodynarnic therapy, activatable photosensitizer, DCM, cysteine, GENERALIZED GRADIENT APPROXIMATION, 2-PHOTON FLUORESCENT-PROBE, CORRELATION-ENERGY, SINGLET OXYGEN, ON PROBE, CYSTEINE, DESIGN, HYBRID, VISUALIZATION, EMISSION
  • Middle East Technical University Affiliated: Yes

Abstract

© 2022 American Chemical Society. All rights reserved.Activity-based theranostic photosensitizers are highly attractive in photodynamic therapy as they offer enhanced therapeutic outcome on cancer cells with an imaging opportunity at the same time. However, photosensitizers (PS) cores that can be easily converted to activity-based photosensitizers (aPSs) are still quite limited in the literature. In this study, we modified the dicyanomethylene-4H-chromene (DCM) core with a heavy iodine atom to get two different PSs (DCMO-I, I-DCMO-Cl) that can be further converted to aPS after simple modifications. The effect of iodine positioning on singlet oxygen generation capacity was also evaluated through computational studies. DCMO-I showed better performance in solution experiments and further proved to be a promising phototheranostic scaffold via cell culture studies. Later, a cysteine (Cys) activatable PS based on the DCMO-I core (DCMO-I-Cys) was developed, which induced selective photocytotoxicity along with a fluorescence turn-on response in Cys rich cancer cells.