THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, vol.36, no.6, pp.887-914, 2022 (SCI-Expanded)
Avoiding aliasing in time-resolved flow data obtained through high-fidelity simulations while keeping the computational and storage costs at acceptable levels is often a challenge. Well-established solutions such as increasing the sampling rate or low-pass filtering to reduce aliasing can be prohibitively expensive for large datasets. This paper provides a set of alternative strategies for identifying and mitigating aliasing that are applicable even to large datasets. We show how time-derivative data, which can be obtained directly from the governing equations, can be used to detect aliasing and to turn the ill-posed problem of removing aliasing from data into a well-posed problem, yielding a prediction of the true spectrum. Similarly, we show how spatial filtering can be used to remove aliasing for convective systems. We also propose strategies to prevent aliasing when generating a database, including a method tailored for computing nonlinear forcing terms that arise within the resolvent framework. These methods are demonstrated using a nonlinear Ginzburg-Landau model and large-eddy simulation data for a subsonic turbulent jet.