Appraising the characteristics of particulate matter from leather tanning micro-environments, their respirational risks, and dysfunctions amid exposed working cohorts


Sarwar F., Alam K., Öztürk F., Koçak M., Malik R. N.

Environmental Monitoring and Assessment, cilt.195, sa.12, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 195 Sayı: 12
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s10661-023-12180-y
  • Dergi Adı: Environmental Monitoring and Assessment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Lung function, Particulate matter, Physico-chemical characterization, Tannery micro-environments
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Leather tanneries are known for chemical laden work environments and pulmonic complaints among workers. This study presents an analysis of tannery micro-environments emphasizing on size-based variation in composition of particulate matter and consequent respiratory dysfunctions. Qualitative (FTIR, SEM-EDX) and quantitative assessment (elemental composition, carbon forms) of PM10 and 2.5 has been employed. For lung function evaluation of workforce, spirometry with ATS proprieties was used. The peak concentrations of both PM10 and 2.5 have been found at PU, FU, and B&S. The LTCR for only Cr is high for both PM2.5 and PM10. HQ was high for Al, Cr, and Mn for both PM sizes. The maximum organic and secondary organic carbon in PM10 was found at FU and in PM2.5 at PU. The varied PM composition included carbohydrate (B&S, WMO), ether (S&S, P&S) and hydroxyl (B&S, S&S, P&S), proteins, polyenes, vinyl groups (S&S, P&S, FU), alcohols (PU and FU), and aldehyde present at PU. These results were armored by high organic and total carbon concentrations for the same sites. Therefore, PM are classified into biogenic (carbonaceous: microbial and animal remains) from PU and WMO, incidental (industrial, mixt physico-chemical character) from PU, FU, WMO, B&S and P&S, and geogenic (crustal mineral dust) from RHT, B&S, PU, and P&S. Furthermore, increase in metal concentrations in PM10 (Cr, Mn, Co, Ni, V, As, Be, Ba, and Cd) and PM2.5 (As, Pb) while TC, OC, and SOC in PM2.5 caused depreciation overall lung function. The exposure to biogenic and incidental PM nature are key cause of pulmonic dysfunction.