NILPOTENT LENGTH OF A FINITE SOLVABLE GROUP WITH A FROBENIUS GROUP OF AUTOMORPHISMS


Creative Commons License

ERCAN G. , GÜLOĞLU İ. Ş. , Ogut E.

COMMUNICATIONS IN ALGEBRA, cilt.42, sa.11, ss.4751-4756, 2014 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 42 Konu: 11
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1080/00927872.2013.823776
  • Dergi Adı: COMMUNICATIONS IN ALGEBRA
  • Sayfa Sayıları: ss.4751-4756

Özet

We prove that a finite solvable group G admitting a Frobenius group FH of automorphisms of coprime order with kernel F and complement H such that [G, F] = G and C-CG(F) (h) = 1 for all nonidentity elements h is an element of H, is of nilpotent length equal to the nilpotent length of the subgroup of fixed points of H.