10th Asian Conference on Computer Vision, ACCV 2010, Queenstown, Yeni Zelanda, 8 - 12 Kasım 2010, cilt.6495 LNCS, ss.501-512
This paper presents a new method for viewpoint invariant pedestrian recognition problem. We use a metric learning framework to obtain a robust metric for large margin nearest neighbor classification with rejection (i.e., classifier will return no matches if all neighbors are beyond a certain distance). The rejection condition necessitates the use of a uniform threshold for a maximum allowed distance for deeming a pair of images a match. In order to handle the rejection case, we propose a novel cost similar to the Large Margin Nearest Neighbor (LMNN) method and call our approach Large Margin Nearest Neighbor with Rejection (LMNN-R). Our method is able to achieve significant improvement over previously reported results on the standard Viewpoint Invariant Pedestrian Recognition (VIPeR [1]) dataset. © 2011 Springer-Verlag Berlin Heidelberg.