Explicit general solution of the squared secant potential and some consequences


Alici H.

RAMANUJAN JOURNAL, cilt.62, sa.1, ss.111-140, 2023 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 62 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s11139-023-00748-8
  • Dergi Adı: RAMANUJAN JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.111-140
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

In this article, we obtain an explicit general solution of the Schrodinger equation with the squared secant potential v(v + 1)sec(2)x in terms of elementary functions for non negative integer value of v = n. Alternatively, we provide a general solution in terms of the Gauss hypergeometric function for any parameter value v. Then, we derive some hypergeometric identities by comparing these two sets of solutions when v is a non negative integer. With the help of these hypergeometric formulas, we derive several existing explicit representations as well as new ones for some special functions and orthogonal polynomials including the Legendre, Ferrers, and the Bessel functions, the Jacobi and the Lommel polynomials containing specific parameters.