Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae)


Some S., Bulut O., Biswas K., Kumar A., Roy A., Sen I. K., ...More

SCIENTIFIC REPORTS, vol.9, 2019 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 9
  • Publication Date: 2019
  • Doi Number: 10.1038/s41598-019-50906-6
  • Journal Name: SCIENTIFIC REPORTS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Middle East Technical University Affiliated: No

Abstract

Herein, we report the synthesis of silver nanoparticles (AgNPs) by a green route using the aqueous leaf extract of Morus indica L. V1. The synthesized AgNPs exhibited maximum UV-Vis absorbance at 460 nm due to surface plasmon resonance. The average diameter (similar to 54 nm) of AgNPs was measured from HR-TEM analysis. EDX spectra also supported the formation of AgNPs, and negative zeta potential value (-14 mV) suggested its stability. Moreover, a shift in the carbonyl stretching (from 1639 cm(-1) to 1630 cm(-1)) was noted in the FT-IR spectra of leaf extract after AgNPs synthesis which confirm the role of natural products present in leaves for the conversion of silver ions to AgNPs. The four bright circular rings (111), (200), (220) and (311) observed in the selected area electron diffraction pattern are the characteristic reflections of face centered cubic crystalline silver. LC-MS/MS study revealed the presence of phytochemicals in the leaf extract which is responsible for the reduction of silver ions. MTT assay was performed to investigate the cytotoxicity of AgNPs against two human cell lines, namely HepG2 and WRL-68. The antibacterial study revealed that MIC value of the synthesized AgNPs was 80 mu g/ml against Escherichia coli K12 and Staphylococcus aureus (MTCC 96). Finally, the synthesized AgNPs at 10 mu g/ml dosages showed beneficial effects on the survivability, body weights of the Bombyx mori L. larvae, pupae, cocoons and shells weights via enhancing the feed efficacy.