Analysis of Image Registration with Tangent Distance


Creative Commons License

Vural E., Frossard P.

SIAM JOURNAL ON IMAGING SCIENCES, cilt.7, sa.4, ss.2860-2915, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 7 Sayı: 4
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1137/140974559
  • Dergi Adı: SIAM JOURNAL ON IMAGING SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2860-2915
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

The computation of the geometric transformation between a reference and a target image, known as registration or alignment, corresponds to the projection of the target image onto the transformation manifold of the reference image (the set of images generated by its geometric transformations). However, it often takes a nontrivial form such that the exact computation of projections on the manifold is difficult. The tangent distance method is an effective algorithm for solving this problem by exploiting a linear approximation of the transformation manifold of the reference image. As theoretical studies about the tangent distance algorithm have been largely overlooked, we present in this work a detailed performance analysis of this useful algorithm, which can eventually help its implementation and the selection of its parameters. We consider a popular image registration setting using a multiscale pyramid of low-pass filtered versions of the (possibly noisy) reference and target images, which is particularly useful for recovering large transformations. We first show that the alignment error has a nonmonotonic variation with the filter size, due to the opposing effects of filtering on both manifold nonlinearity and image noise. We then study the convergence of the multiscale tangent distance method to the optimal solution. Our theoretical findings are confirmed by experiments on image transformation models involving translations, rotations, and scalings. Our study is the first detailed study of the tangent distance algorithm that leads to a better understanding of its efficacy and to the proper selection of its design parameters.