19th International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, İtalya, 11 - 15 Eylül 2017, ss.1894-1897
We present efficient and accurate solutions of scattering problems involving dense discretizations with respect to wavelength. Recently developed potential integral equations (PIEs) for stable solutions of low-frequency problems are used to formulate such challenging problems, where the electric current density and magnetic vector potential are defined as unknowns. For solving problems discretized with large numbers of unknowns, we further use an approximate diagonalization of the Green's function within the multilevel fast multipole algorithm (MLFMA). The capability of the implementation based on PIEs and MLFMA is demonstrated on canonical problems, whose solutions are difficult via the conventional formulations and/or standard acceleration methods.