JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, cilt.57, sa.4, ss.389-399, 2006 (SCI-Expanded)
We address the multi-item, capacitated lot-sizing problem (CLSP) encountered in environments where demand is dynamic and to be met on time. Items compete for a limited capacity resource, which requires a setup for each lot of items to be produced causing unproductive time but no direct costs. The problem belongs to a class of problems that are difficult to solve. Even the feasibility problem becomes combinatorial when setup times are considered. This difficulty in reaching optimality and the practical relevance of CLSP make it important to design and analyse heuristics to find good solutions that can be implemented in practice. We consider certain mixed integer programming formulations of the problem and develop heuristics including a curtailed branch and bound, for rounding the setup variables in the LP solution of the tighter formulations. We report our computational results for a class of instances taken from literature.