Atıf İçin Kopyala
Islam M., Tiku M.
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, cilt.33, sa.10, ss.2443-2467, 2004 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
33
Sayı:
10
-
Basım Tarihi:
2004
-
Doi Numarası:
10.1081/sta-200031519
-
Dergi Adı:
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus
-
Sayfa Sayıları:
ss.2443-2467
-
Anahtar Kelimeler:
multiple linear regression, modified likelihood, robustness, outliers, M estimators, least squares, nonnormality, hypothesis testing, MAXIMUM-LIKELIHOOD, EXPERIMENTAL-DESIGN, ROBUST, SAMPLES
-
Orta Doğu Teknik Üniversitesi Adresli:
Hayır
Özet
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.